0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Nuclear Safety-Related Underground Diesel Fuel Oil Storage Tanks

[+] Author Affiliations
Shen Wang, Necip O. Akinci, William H. Johnson, Luis M. Moreschi

Bechtel Power Corporation, Frederick, MD

Paper No. POWER2010-27042, pp. 435-442; 8 pages
doi:10.1115/POWER2010-27042
From:
  • ASME 2010 Power Conference
  • ASME 2010 Power Conference
  • Chicago, Illinois, USA, July 13–15, 2010
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4935-4 | eISBN: 978-0-7918-3876-1
  • Copyright © 2010 by ASME

abstract

Diesel fuel oil storage tanks are critical components for safety of nuclear power plants. Proper functioning of the emergency diesel generators during an earthquake depends on the fuel oil supplied from the storage tank. Failure of the tank, nozzles or fuel pipes can result in contamination and/or leakage of the fuel. The allowable stress limits and design charts for above ground tanks, which are provided in the ASME Boiler and Pressure Vessel Code for a pressure vessel, are occasionally adopted in the design of underground tanks. However, the analytical methodology for evaluation of stresses in the buried tanks requires detailed analysis different from that for a typical pressure vessel. Soil-structure and fluid-structure interaction effects need to be considered in the analysis for simulation of the actual static and seismic loads. Therefore, advanced simulation techniques and finite element analysis tools have been used by several researchers to evaluate buried tanks. Simple, but acceptably accurate techniques for comprehensive evaluation of underground storage tanks have not been established. This study presents simplified evaluation techniques for a diesel fuel storage tank using fundamental concepts. The diesel fuel oil storage tanks considered here are cylindrical and oriented with their axes in the horizontal direction. The static overburden and seismic pressures cause ovaling of the tank and generate significant bending stresses, which are not addressed in the pressure vessel design approach. The simplified tank evaluation proposed here includes the ovaling effect under static overburden, seismic and sloshing loads. Earthquake induced stresses in hoop and longitudinal directions are calculated using the free field approach and the classical Housner Method is employed in the sloshing analysis. Allowable stress and buckling of the tank wall are checked against corresponding criteria.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In