0

Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying Detection Capabilities of Detrimental Conditions in High-Density Polyethylene Butt-Fusion Joints

[+] Author Affiliations
Caleb J. Frederick

Structural Integrity Associates, Inc., Charlotte, NC

Paper No. ICONE18-30115, pp. 449-455; 7 pages
doi:10.1115/ICONE18-30115
From:
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 6
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4934-7
  • Copyright © 2010 by ASME

abstract

Today, commercial nuclear power plants are installing High-Density Polyethylene (HDPE) piping in non-safety-related and safety-related systems. HDPE has been chosen in limited quantity to replace carbon steel piping as it does not support rust, rot, or biological growth. However, due to its relatively short nuclear service history, developing a way to accurately evaluate joint integrity in HDPE is crucial to utilities and the U.S. Nuclear Regulatory Commission (USNRC). This paper will investigate using ultrasonic Phased Array to quantify detection of flaws and detrimental conditions in butt-fusion joints throughout the full spectrum of applicable HDPE pipe diameters and wall-thicknesses. Currently the most concerning joint condition is that of “Cold Fusion”. A cold-fused joint is created when molecules along the fusion line do not fully entangle or co-crystallize. Once the fusion process is complete, there is the appearance of a good, quality joint. However, the fabricated joint does not have the required strength as the co-crystallization along the pipe faces has not occurred. Therefore, performing a visual examination of the bead, as required by the current revision of ASME Code Case N-755, does not provide adequate assurance of joint integrity. As a potential solution, volumetric examination is being considered by the USNRC to safeguard against this and other types of detrimental conditions. Factors addressed will include pipe diameter, wall-thickness, fusing temperature, interfacial pressure, dwell (open/close) time, and destructive correlation with ultrasonic data.

Copyright © 2010 by ASME
Topics: Density

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In