Full Content is available to subscribers

Subscribe/Learn More  >

Validations of CFD Code for Density-Gradient Driven Air Ingress Stratified Flow

[+] Author Affiliations
Chang H. Oh, Eung S. Kim

Idaho National Laboratory, Idaho Falls, ID

Paper No. ICONE18-29807, pp. 201-209; 9 pages
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 6
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4934-7
  • Copyright © 2010 by ASME


Air ingress into a very high temperature gas-cooled reactor (VHTR) is an important phenomenon to consider because the air oxidizes the reactor core and lower plenum where the graphite structure supports the core region in the gas turbine modular helium reactor (GT-MHR) design, thus jeopardizing the reactor’s safety. Validating the computational fluid dynamics (CFD) code used to analyze the air ingress phenomena is therefore an essential part of the safety analysis and the ultimate computation required for licensing. An experimental data set collected by ETH Zurich on a lock exchange experiment (Grobelbauser et al., Lowe et al. 2002; Lowe et al. 2005; and Shin et al. 2004) was selected for the validation. The experiment was based on a series of lock exchange flows with gases of different density ratios varying from 0.046 to 0.9 in a closed channel of a square cross-section. The focus was on the quantitative measurement of front velocities of the gravity current flows. The experiment results cover the full range of gas intrusions—heavy as well as light—for the gravity current flows in the lock exchange situations. FLUENT CFD code (ANSYS Fluent 2008) was used. The calculated results showed very good agreement with the experimental data. A number of tables and comparison plots are included to summarize the estimated current speeds. The current speed obtained by experimental data was 1.25 m/s and that of the simulation was 1.19 m/s. This result indicates that the deviation of the simulation is only 4.8% that of the experimental data.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In