0

Full Content is available to subscribers

Subscribe/Learn More  >

Conceptual Structure Design of High Temperature Isolation Valve for High Temperature Gas Cooled Reactor

[+] Author Affiliations
Shoji Takada, Kenji Abe, Yoshiyuki Inagaki

Japan Atomic Energy Agency, Oarai, Ibaraki, Japan

Paper No. ICONE18-29379, pp. 53-58; 6 pages
doi:10.1115/ICONE18-29379
From:
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 6
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4934-7
  • Copyright © 2010 by ASME

abstract

The high temperature isolation valve (HTIV) is a key component to assure the safety of a high temperature gas cooled reactor (HTGR) connected with a hydrogen production system, that is, protection of radioactive material release from the reactor to the hydrogen production system and combustible gas ingress to the reactor at the accident of fracture of an intermediate heat exchanger and the chemical reactor. The HTIV used in the helium condition over 900 °C, however, has not been made for practical use yet. The conceptual structure design of an angle type HTIV was carried out. A seat made of Hasteloy-XR is welded inside a valve box. Internal thermal insulation is employed around the seat and a liner because high temperature helium gas over 900 °C flows inside the valve. Inner diameter of the top of seat was set 445 mm based on fabrication experiences of valve makers. A draft overall structure was proposed based on the diameter of seat. The numerical analysis was carried out to estimate temperature distribution and stress of metallic components by using a three-dimensional finite element method code. Numerical results showed that the temperature of the seat was simply decreased from the top around 900 °C to the root, and the thermal stress locally increased at the root of the seat which was connected with the valve box. The stress was lowered below the allowable limit 120 MPa by decreasing thickness of the connecting part and increasing the temperature of valve box to around 350 °C. The stress also increased at the top of the seat. Creep analysis was also carried out to estimate a creep-fatigue damage based on the temperature history of the normal operation and the depressurization accident.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In