0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiphysics Modeling and Simulation for Stress Corrosion Cracking Considering Oxygen Atom Diffusion Along Grain Boundary

[+] Author Affiliations
Takahiro Igarashi, Yoshiteru Aoyagi, Yoshiyuki Kaji

Japan Atomic Energy Agency, Tokai, Ibaraki, Japan

Paper No. ICONE18-29337, pp. 129-133; 5 pages
doi:10.1115/ICONE18-29337
From:
  • 18th International Conference on Nuclear Engineering
  • 18th International Conference on Nuclear Engineering: Volume 5
  • Xi’an, China, May 17–21, 2010
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4933-0
  • Copyright © 2010 by ASME

abstract

Aged degradations of structural materials of boiling water reactors by stress corrosion cracking (SCC) have been frequently reported. SCC is the results of the synergistic interaction of mechanical stress and corrosive environment, and the investigation of this phenomenon has been an important issue. Although many kinds of studies for SCC have been carried out, we have not clarified the fundamental mechanisms of SCC initiation and propagation yet. In the recent experimental studies, nano-scale observation around crack tips using transmission electron microscopy have shown three characteristics of SCC of nuclear structural materials as follows; the size of crack tip is nanometer order, the opening crack is filled with the oxides, and oxygen atoms exist in the grain boundary beyond the crack tips. The second and third ones show that the corrosive environment is mainly influenced on the SCC propagation behavior. Furthermore, electron back scatter diffraction pattern analyses have shown that about 10–20% of plastic strain exists around the crack tips and crack sides. The existence of oxygen atoms along grain boundaries and plastic strains around grain boundaries could be related to the crack propagation mechanism of SCC. In this study, in order to observe the influence of oxygen atoms on the SCC propagation behavior, the two-dimensional SCC propagation model considering diffusion of oxygen atoms along grain boundaries is developed. In this model, the stress distribution of polycrystalline system is obtained by the crystal plasticity theory, and the concentration of oxygen atoms depending on stress localization around cracks is calculated using the diffusion equation of oxygen atoms considering the stress gradient. The density distribution of oxygen atoms is adopted for the threshold of the crack propagation. Relation between the threshold of crack propagation as a viewpoint of density of oxygen atoms along grain boundaries and the geometry of SCC is discussed in this paper.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In