0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Analysis of a Proposed Transport Cask for Three Advanced Burner Reactor Used Fuel Assemblies

[+] Author Affiliations
Tim Bullard, Miles Greiner

University of Nevada, Reno, NV

Matt Dennis, Ruth Weiner

Sandia National Labs, Albuquerque, NM

Samuel Bays

Idaho National Lab, Idaho Falls, ID

Paper No. PVP2010-26138, pp. 579-586; 8 pages
doi:10.1115/PVP2010-26138
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 7
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4926-2 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Preliminary studies of used fuel generated in the US Department of Energy’s Advanced Fuel Cycle Initiative have indicated that current used fuel transport casks may be insufficient for the transportation of said fuel. This work considers transport of three 5-year-cooled oxide Advanced Burner Reactor used fuel assemblies with a burn-up of 160 MWD/kg. A transport cask designed to carry these assemblies is proposed. This design employs a 7-cm-thick lead gamma shield and a 20-cm-thick NS-4-FR composite neutron shield. The temperature profile within the cask, from its center to its exterior surface, is determined by two dimensional computational fluid dynamics simulations of conduction, convection, and radiation within the cask. Simulations are performed for a cask with a smooth external surface and various neutron shield thicknesses. Separate simulations are performed for a cask with a corrugated external surface and a neutron shield thickness that satisfies shielding constraints. Resulting temperature profiles indicate that a three-assembly cask with a smooth external surface will meet fuel cladding temperature requirements but will cause outer surface temperatures to exceed the regulatory limit. A cask with a corrugated external surface will not exceed the limits for both the fuel cladding and outer surface temperatures.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In