Full Content is available to subscribers

Subscribe/Learn More  >

Towards an Improved Understanding of Water-Hammer Column-Separation Due to Rapid Valve Closure

[+] Author Affiliations
H. A. Warda, Y. Elashry

Alexandria University, Alexandria, Egypt

Paper No. PVP2010-26146, pp. 379-395; 17 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 7
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4926-2 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


Column separation phenomenon occurring downstream of a closing valve, simulating the closure of non-return/check valve downstream of pumps due to pump trip is simulated. An improved understanding of how cavity is opened, grows and collapses is supported by comparing numerical results with measured values and analyzing video frames. In the present study two models, discrete vapor cavity and gas cavity models, of column separation are compared for the modeling of column separation. Both models showed considerable degree of stability with variation of number of sections into which the pipe is divided. An experimental setup was built to provide the means of obtaining reliable experimental data for transient flow in viscoelastic pipes to verify the numerical model. Two valve closure schemes were tested using solenoid globe and ball valves. Video photographs of column separation during the vapor cavity formation, growth and collapse were processed and video films are transformed into frames using computer software. The video frames representing the cavity development and pressure measurements downstream of the valve are compared with corresponding cavity and pressure traces predicted by the model at each time step of the framing process at the same location. It was also shown that the characteristic of check valve closure scheme seriously affects the cavity formation and the extent of pressure surges due to cavity collapse.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In