Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Pressure Loss Throughout a Clogged Steam Generator Tube Support Plate in Single Phase Flow

[+] Author Affiliations
Olivier Brunin, Geoffrey Deotto

EDF SEPTEN, Villeurbanne, France

Franck David, Joël Pillet

EDF MFEE, Chatou, France

Gilles Dague, Alexandre Nicoli

AREVA NP SAS, Paris La Défense, France

Paper No. PVP2010-25606, pp. 65-72; 8 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 7
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-4926-2 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


After a period of several years of operation, steam generators can be affected by fouling and clogging. Fouling means that deposits of sludge accumulate on tubes or tube support plates (TSP). That results in a reduction of heat exchange capabilities and can be modelled by means of a fouling factor. Clogging is a reduction of flow free area due to an accumulation of sludge in the space between TSP and tubes. The increase of the clogging ratio results in an increase of the overall TSP pressure loss coefficient. The link between the clogging ratio and the overall TSP pressure loss coefficient is the most important aspect of our capability to accurately calculate the thermal-hydraulics of clogged steam generators. The aim of the paper is to detail the experimental approach chosen by EDF and AREVA NP to address the calculation uncertainties. The calculation method is classically based on the computation of a single-phase (liquid-only) pressure loss coefficient, which is multiplied by a two-phase flow factor. Both parameters are well documented and can be derived on the basis of state of the art methods such as IDEL’CIK diagrams and CHISHOLM formula. The experimental approach consists of a validation of the correlations by performing tests on a mock-up section with an upward flow throughout a vertical array of tubes. A mixture of water and vapour refrigerant R116 is used to represent two-phase flows. The tube bundle is composed of a 25 tubes array in a square arrangement. The overall height of the mock-up is 2 m. Eight test TSPs were manufactured, considering eight different clogging configurations: six plates with a typical clogging profile at six clogging ratios (0, 44%, 58%, 72%, 86%, 95%), and two plates with a clogging ratio of 72% associated with two different clogging profiles (large bending radius profile and rectangular profile). A series of tests were performed in 2009 in single-phase flow conditions. Two-phase flow tests with a mixture of liquid water and vapour refrigerant R116 will be performed in 2010. The paper illustrates the main results obtained during the single-phase tests performed in 2009.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In