0

Full Content is available to subscribers

Subscribe/Learn More  >

Weld Residual Stress Analysis and the Effects of Structural Overlay on Various Nuclear Power Plant Nozzles

[+] Author Affiliations
Tao Zhang, Bud Brust, Gery Wilkowski

Engineering Mechanics Corporation of Columbus, Columbus, OH

Sam Ranganath

XGEN Engineering, San Jose, CA

Lihua Wang, Yao Long Tsai

Industrial Technology Research Institute, Hsinchu, Taiwan

Chin-Cheng Huang, Ru-Feng Liu

Institute of Nuclear Energy Research, Longtan, Taoyuan, Taiwan

Paper No. PVP2010-25331, pp. 1333-1342; 10 pages
doi:10.1115/PVP2010-25331
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Welding is a commonly used and one of the most important material-joining processes in industry. The incidences of defects had been located by ultrasonic testing (UT) in various pressurizer nozzle dissimilar metal welds (DMW) at nuclear power plants. In order to evaluate the crack propagation, it is required to calculate the stress distribution including weld residual stress and operational stress through the wall thickness in the weld region. The analysis procedure in this paper included not only the pass-by-pass welding steps, but also other essential fabrication steps of surge, safety/relief and spray nozzles. In this paper, detailed welding simulation analyses have been conducted to predict the magnitude of these stresses in the weld material. To prevent primary water stress corrosion cracking (PWSCC) in pressurized water reactors (PWR) on susceptible welded pipes with dissimilar metal welds, the weld overlay process has been applied to repair nuclear reactor pipe joints in plants. The objectives of such repairs are to induce compressive axial residual stresses on the pipe inside surface, as well as increase the pipe thickness with a weld material that is not susceptible to stress-corrosion cracking. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe joints with weld overlay repairs. The finite element results in this paper showed that, after deposition of the DMW nozzle and stainless steel welds, tensile weld residual stresses still exist at regions of the DMW through the thickness. This tensile weld residual stress region was significantly reduced after welding the overlay. The overlay weld also provides a more uniform and large compressive region through the thickness which has a beneficial effect on the structural integrity of the DMW nozzle welds in the plant.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In