0

Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Residual Stresses in Stainless Steel Cladded Specimens

[+] Author Affiliations
E. Kingston

Veqter Ltd., Bristol, UK

M. Udagawa

Japan Atomic Energy Agency (JAEA), Ibaraki, Japan

J. Katsuyama, K. Onizawa

Japan Atomic Energy Agency, Ibaraki, Japan

D. J. Smith

University of Bristol, Bristol, UK

Paper No. PVP2010-25315, pp. 1317-1323; 7 pages
doi:10.1115/PVP2010-25315
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Residual stresses were measured in cladded steel specimens using deep hole drilling (DHD) and block removal and surface layering (BRSL) techniques. The samples consisted of a A533B steel substrate and cladded with Type 304 stainless steel using two different welding techniques; electro-slag (ESW) and submerged welding (SAW). Two SAW samples were created; one with a single layer of weld and a second with a double layer of welding. Only a single weld layer of ESW was used on another sample. All three samples were subjected to post-weld heat treatment prior to measurement. The measured residual stress distributions revealed (as expected) tensile stresses in the clad. However, the DHD method measured compressive stresses in the substrate adjacent to the clad for the single layer ESW and SAW welds. In contrast, the BRSL method found that the residual stresses in the substrate were close to zero or approximately tensile. The measurements are compared with results obtained from finite element (FE) simulations of the welding and PWHT treatment. The predicted tensile residual stresses in the clad were found to be larger than the measurements while in the substrate the FE analysis did not predict the measured compressive stresses.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In