Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Material Factors on FAC Rate and Characteristics of Oxide Layer

[+] Author Affiliations
Yutaka Watanabe, Hiroshi Abe, Takamichi Miyazaki

Tohoku University, Sendai, Japan

Paper No. PVP2010-25584, pp. 1253-1256; 4 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


Combined effects of Cr content and pH on corrosion rate of carbon steels due to flow accelerated corrosion have been examined by experiments and their relation to oxide scale characteristics based on detailed oxide layer characterizations using transmission electron microscope with X-ray analyzer have been discussed. Effect of Cr content on FAC mitigation decrease continuously as pH is increased from neutral to 10.4 and effect of pH on that increase significantly from pH 9.1 to 9.4. Obvious Cr enrichment has been observed in the oxide layer of 1.01 wt% Cr content steel regardless pH condition. Cr concentration is highest at top surface of oxide layer, and that decrease from surface to oxide / metal interface gradually. It has been suggested that Cr enrichment stabilize oxide layer (decrease solubility and defect density of oxide layer), as a result, FAC suppressed.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In