Full Content is available to subscribers

Subscribe/Learn More  >

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach

[+] Author Affiliations
Sung Kyu Ha, Seong Jong Kim, Khazar Hayat, Kyo Kook Jin

Hanyang University, Ansan, Gyeoniggi, South Korea

Stephen W. Tsai

Stanford University, Stanford, CA

Paper No. PVP2010-25841, pp. 1179-1185; 7 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multiaxial fatigue loading acting at laminate is determined from finite element analysis (FEM) of composite pressure vessel, and ply stresses are computed using a classical laminate theory (CLT). The micro-scale stresses are calculated in each constituent (i.e. matrix, interface, and fiber) from ply stresses using a micromechanical model. Micromechanics of failure (MMF) was originally developed to predict the strength of composites and now extended to prediction of fatigue life. Two methods are employed in predicting fatigue life of each constituent, i.e. an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner’s rule. Each fiber is assumed to follow a probabilistic failure depending on the length. Using the overall micro and macro models established in this study, Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent and manufacturing winding helical angle.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In