0

Full Content is available to subscribers

Subscribe/Learn More  >

A Risk-Uncertainty Formula Accounting for Uncertainties of Failure Probability and Consequence in a Nuclear Powerplant

[+] Author Affiliations
Jeffrey T. Fong, James J. Filliben, N. Alan Heckert, Robert E. Chapman

National Institute of Standards & Tech. (NIST), Gaithersburg, MD

Stephen R. Gosselin

Scandpower Risk Management, Inc., Richland, WA

Pedro V. Marcal

MPact Corp., Julian, CA

Paper No. PVP2010-25168, pp. 1065-1089; 25 pages
doi:10.1115/PVP2010-25168
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

This paper is a continuation of a recent ASME Conference paper entitled “Design of a Python-Based Plug-in for Benchmarking Probabilistic Fracture Mechanics Computer Codes with Failure Event Data” (PVP2009-77974). In that paper, which was co-authored by Fong, deWit, Marcal, Filliben, Heckert, and Gosselin, we designed a probability-uncertainty plug-in to automate the estimation of leakage probability with uncertainty bounds due to variability in a large number of factors. The estimation algorithm was based on a two-level full or fractional factorial design of experiments such that the total number of simulations will be small as compared to a Monte-Carlo method. This feature is attractive if the simulations were based on finite element analysis with a large number of nodes and elements. In this paper, we go one step further to derive a risk-uncertainty formula by computing separately the probability-uncertainty and the consequence-uncertainty of a given failure event, and then using the classical theory of error propagation to compute the risk-uncertainty within the domain of validity of that theory. The estimation of the consequence-uncertainty is accomplished by using a public-domain software package entitled “Cost-Effectiveness Tool for Capital Asset Protection, version 4.0, 2008” (http://www.bfrl.nist.gov/oae/ or NIST Report NISTIR-7524 ), and is more fully described in a companion paper entitled “An Economics-based Intelligence (EI) Tool for Pressure Vessels & Piping (PVP) Failure Consequence Estimation,” (PVP2010-25226, Session MF-23.4 of this conference). A numerical example of an application of the risk-uncertainty formula using a 16-year historical database of probability and consequence of main steam and hot reheat piping systems is presented. Implication of this risk-uncertainty estimation tool to the design of a risk-informed in-service inspection program is discussed.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In