0

Full Content is available to subscribers

Subscribe/Learn More  >

Modification of the Failure Assessment Diagram for Non-Sharp Defects

[+] Author Affiliations
Anthony J. Horn

The University of Manchester, Manchester, UK

Andrew H. Sherry

The University of Manchester, UK

Paper No. PVP2010-25443, pp. 971-979; 9 pages
doi:10.1115/PVP2010-25443
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Current defect assessment procedures assume all flaws to be sharp. While this assumption may be appropriate for fatigue cracks, in other cases such as voids, mechanical dents or welding defects it can be an over-conservative assumption that can lead to pessimistic assessment of structures and significant under-estimation of their safety margin against fracture. This study has developed an assessment procedure for predicting the cleavage fracture resistance of structures containing non-sharp defects. The new assessment method was developed using the Weibull stress based toughness scaling model and an approach based on a modification of the Failure Assessment Diagram (FAD). In the new assessment procedure, the notch driving force is described by the notch J-integral, the notch tip loading severity by the elastic notch tip opening stress σN , the notch geometry by a load-independent parameter βN , and the sensitivity of the material toughness to the notch effect by the material parameters γ and l. Finite element analysis of SE(B) specimens containing U-notches was used to demonstrate that the notch J-integral can be estimated using existing expressions in fracture toughness testing standards intended for pre-cracked specimens. A test programme of SE(B) specimens containing U-notches was used to validate the new assessment procedure. Failure predictions of the SE(B) specimens using the notch-modified FAD approach result in significantly reduced conservatism compared to the standard FAD assessment approach for sharp cracks.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In