Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Nitrogen on Hydrogen Embrittlement of Austenitic Stainless Steels Based on Type 316LN

[+] Author Affiliations
Masaaki Imade, Lin Zhang, Bai An, Takashi Iijima, Seiji Fukuyama, Kiyoshi Yokogawa

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Paper No. PVP2010-25698, pp. 931-937; 7 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


The effect of nitrogen on hydrogen gas embrittlement (HGE) in 1 and 70 MPa hydrogen and internal reversible hydrogen embrittlement (IRHE) of austenitic stainless steels of 17Cr11Ni2Mo(0.4 in max.)N alloys, based on type 316LN, was investigated by slow strain rate technique tests at room temperature in comparison with the effect of Ni on HGE and IRHE of Ni-added type 316 stainless-steel-alloys. For the nitrogen-added alloys, HGE and IRHE decreased with increasing nitrogen content, where α′ martensitic transformation occurred. HGE was not observed but IRHE was observed above the nitrogen content, where austenite is completely stabilized by nitrogen. Hydrogen-induced fracture related to the strain-induced α′ martensite structure was observed in HGE specimens and that together with brittle transgranular fracture was observed in IRHE specimens. HGE of the nitrogen-added alloys is larger than that of the Ni-added alloys in the Nieq range, where α′ martensitic transformation occurred. No HGE was observed in both the nitrogen-added alloys and the Ni-added alloys, but IRHE was observed in not the Ni-added alloys but the nitrogen-added alloys above the Nieq , where no martensite is identified in both alloys. It is discussed that the α′ martensite and the austenite of the nitrogen-added alloys were more sensitive to HGE or IRHE than those of the Ni-added alloys.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In