Full Content is available to subscribers

Subscribe/Learn More  >

The Role of Environment on High Temperature Creep-Fatigue Behavior of Alloy 617

[+] Author Affiliations
Laura Carroll, Richard Wright

Idaho National Laboratory, Idaho Falls, ID

Celine Cabet

Commissariat a l’Energie Atomique, Gif-sur-Yvette, France

Paper No. PVP2010-26126, pp. 907-916; 10 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950°C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Furthermore, previous work on corrosion of nickel base alloys in impure helium has suggested that this environment is far from inert with respect to Alloy 617. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950°C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle and creep-fatigue specimens exhibited intergranular cracking, but did not show evidence of grain boundary cavitation. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creep-fatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In