Full Content is available to subscribers

Subscribe/Learn More  >

A New Approach to Creating Composite Materials Elastic Property Database With Uncertainty Estimation Using a Combination of Mechanical and Thermal Expansion Tests

[+] Author Affiliations
Jose Daniel D. Melo

Federal University of Rio Grande do Norte, Natal, RN, Brazil

Jeffrey T. Fong

National Institute of Standards & Technology, Gaithersburg, MD

Paper No. PVP2010-26144, pp. 771-776; 6 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


In composite structural design, a fundamental requirement is to furnish the designer with a set of elastic constants. For example, to design for a given temperature a laminate consisting of transversely isotropic fiber-reinforced laminae, we need five independent elastic constants of each lamina of interest, namely, E1 , E2 , ν12 , G12 , and ν23 . At present, there exist seven tests, two of mechanical-lamina, two of thermal-expansion-lamina, and three of thermal-expansion-laminate types, to accomplish this task. It is known in the literature that the mechanical tests are capable of measuring E1 , E2 , and ν12 , whereas the two thermal-expansion-lamina tests will measure α1 and α2 , and the three thermal-expansion-laminate tests yield an over-determined system of three simultaneous equations of the remaining two unknown elastic constants, G12 and ν23 . In this paper, we propose a new approach to determining those five elastic constants with uncertainty bounds using the extra information obtainable from an over-determined system. The approach takes advantage of the classical theory of error propagation for which variance formulas were derived to estimate standard deviations of some of our five elastic constants. To illustrate this approach, we apply it to a set of experimental data on PEEK/IM7 unidirectional lamina. The experiment consists of the following tests: Two tensile tests with four samples of unidirectional specimens to measure E1 , E2 and ν12 ; two thermal-expansion-lamina tests for coefficients (α1 and α2 ) each using four [(0)32 ]T unidirectional specimens; and three thermal-expansion-laminate tests on four samples of [(+30/−30)8 ]s laminates. The results of our new approach are compared with those of a similar but more ad hoc approach that has appeared in the literature. The potential of applying this new methodology to the creation of a composite material elastic property database with uncertainty estimation and to the reliability analysis of composite structure is discussed.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In