0

Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying the Crack Tip Oxidation Kinetics Parameters and Their Contribution to Stress Corrosion Cracking in High Temperature Water

[+] Author Affiliations
Tetsuo Shoji, Zhanpeng Lu, He Xue, Yubing Qiu, Kazuhiko Sakaguchi

Tohoku University, Sendai, Japan

Paper No. PVP2010-25238, pp. 657-674; 18 pages
doi:10.1115/PVP2010-25238
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Stress corrosion cracking is the result of the interaction between crack tip oxidation kinetics and crack tip mechanics. Oxidation kinetic processes for austenitic alloys in high temperate water environments are analyzed, emphasizing the effects of alloy composition and microstructure, temperature, water chemistry, etc. The crack chemistry is investigated with introducing the effect of aging on reactivity of crack sides and the throwing power of bulk water chemistry. Oxidation rate constants under various conditions are calculated based on quasi-solid state oxidation mechanism, which are incorporated in the theoretical growth rate equation to quantify the effects of several key parameters on stress corrosion cracking growth rates of austenitic alloys in high temperature water environments, especially the effect of environmental parameters on stress corrosion cracking of Ni-base alloys in simulated PWR environments and stainless steels in simulated boiling water environments.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In