Full Content is available to subscribers

Subscribe/Learn More  >

Cavitation Damage Study via a Novel Repetitive Pressure Pulse Approach

[+] Author Affiliations
John Jy-An Wang, Fei Ren, Hong Wang

Oak Ridge National Laboratory, Oak Ridge, TN

Paper No. PVP2010-26102, pp. 217-222; 6 pages
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME


Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials’ resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy. The synergistic effect of combining cavitation and the laser heating/water cooling induced thermal cycling fatigue to the target surface damage was also demonstrated in the report.

Copyright © 2010 by ASME
Topics: Pressure , Cavitation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In