0

Full Content is available to subscribers

Subscribe/Learn More  >

Crack Tip Constraint Under Biaxial Loading in Elastic-Plastic Materials

[+] Author Affiliations
Z. X. Wang, Jian-ye Huang

Jiangsu University, Zhejiang, Jiangsu, China

Y. J. Chao

University of South Carolina, Columbia, SC

P. S. Lam

Savannah River National Lab, Aiken, SC

Paper No. PVP2010-25854, pp. 179-188; 10 pages
doi:10.1115/PVP2010-25854
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Crack tip constraint is known to affect the fracture resistance of materials. The effect of biaxial loading on a center crack in an X100 steel plate has been investigated. The crack driving force and the constraint parameter are estimated based on the two-parameter J-A2 theory in elastic-plastic fracture mechanics with the aid of finite element analysis. The center-cracked plate is subject to various degrees of biaxiality (defined as the ratio of the transverse stress parallel to the crack and the opening stress normal to the crack). Using the constraint parameter (A2 ) in uniaxial loading condition as a reference value, a Constraint Enhancement Factor is introduced to facilitate the investigation of crack tip constraint under biaxial loading. The analysis carried out in this paper has established a relationship between the Constraint Enhancement Factor and the biaxiality. With the J-A2 fracture model, the critical applied load and the critical crack driving force can be expressed as functions of biaxial loading ratio. The methodology and analysis results can be used in structural integrity assessment of a pressure vessel or piping which contains a crack under biaxial loading.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In