0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrity Assessment of a German PWR RPV Considering Loss of Constraint

[+] Author Affiliations
Dieter Siegele, Igor Varfolomeev, Jörg Hohe

Fraunhofer-Institut für Werkstoffmechanik, Freiburg, Germany

Volker Hardenacke

Karlsruher Institute für Technologie, Karlsruhe, Germany

Gerhard Nagel

E.ON Kernkraft, Hannover, Germany

Paper No. PVP2010-25615, pp. 153-159; 7 pages
doi:10.1115/PVP2010-25615
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

The brittle failure assessment for five pressurized water reactor pressure vessels (RPV) of German nuclear power plants (NPP) has been revisited according to an advanced state of the art. Besides of recent innovation in fracture toughness curves and reference temperatures being already in the codes, also the effect of loss of constraint had to be considered when fracture toughness values determined from deep cracks in fracture toughness specimen with high multi-axial state of stress were transferred to crack configurations in the component. Thus, the available concepts were compared for their fitness for purpose, i.e. for their ability to give a fracture toughness representative to the crack configuration or flaw postulate in the component. The results of the investigation reveal a significant lower constraint in the component resulting in increased fracture toughness and showing that the brittle failure assessment based on the high constraint fracture toughness from the standard specimens can be very conservative. For consideration of the constraint conditions in the component besides the deterministic T-stress parameter also probabilistic local approach concepts based on the Weibull model were used which have the advantage of considering both the local stress strain field and the material volume under high loading. The loss of constraint was determined for several flaw postulates in the leading situations on the RPV being the coolant inlet nozzle corner and the flange joint. A considerable loss of constraint was demonstrated for flaw postulates with broken clad in the ferritic nozzle corner. Also in the flange joint the loss of constraint is evident for small flaws. In addition, for flaw postulates under the intact cladding the loss of constraint is remarkably higher than with broken postulated cladding. In summary, with the measured material toughness and the significant loss of constraint a considerable inherent margin against brittle failure can be demonstrated for the investigated load cases.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In