0

Full Content is available to subscribers

Subscribe/Learn More  >

Welding Procedure Establishment for Tubular Joints Welded by Single Station, Solid State Welding Machine

[+] Author Affiliations
Ganesan S. Marimuthu, Per Thomas Moe, Henry Valberg

Norwegian University of Science and Technology, Trondheim, Norway

Bjarne Salberg, Junyan Liu

AMR Engineering AS, Drammen, Norway

James S. Burnell-Gray, Wayne Rudd

Incubator Ltd., Gateshead, Tyne and Wear, UK

Paper No. PVP2010-25626, pp. 29-38; 10 pages
doi:10.1115/PVP2010-25626
From:
  • ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
  • ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B
  • Bellevue, Washington, USA, July 18–22, 2010
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-49255 | eISBN: 978-0-7918-3878-5
  • Copyright © 2010 by ASME

abstract

Forge welding is an efficient welding method for tubular joints applicable in oil and gas industries due to its simplicity in carrying out the welding, absence of molten metal and filler metals, small heat-affected zone and high process flexibility. Prior to forging, the ends (bevels) of the joining tubes can be heated by torch or electromagnetic (EM) techniques, such as induction or high frequency resistance heating. The hot bevels are subsequently pressed together to establish the weld. The entire welding process can be completed within seconds and consistently produces superior quality joints of very high strength and adequate ductility. Industrial forge welding of tubes in the field is relatively expensive compared to laboratory testing. Moreover, at the initial stages of a new project sufficient quantities of pipe material may not be available for weldability testing. For these and several other reasons we have developed a highly efficient single station, solid state welding machine that carefully replicates the thermomechanical conditions of full-scale Shielded Active Gas Forge Welding Machines (SAG-FWM) for pipeline and casing applications. This representative laboratory machine can be used to weld tubular goods, perform material characterization and/or simulate welding and heat treatment procedures. The bevel shapes at mating ends of the tubes are optimized by ABAQUS® simulations to fine tune temperature distribution. The main aim of this paper is to establish a welding procedure for welding the tubular joints by the representative laboratory machine. The quality of the welded tubular joint was analyzed by macro/micro analyses, as well as hardness and bend tests. The challenges in optimizing the bevel shape and process parameters to weld high quality tubular joints are thoroughly discussed. Finally a welding procedure specification was established to weld the tubular joints in the representative laboratory machine.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In