0

Full Content is available to subscribers

Subscribe/Learn More  >

Entropy Generation Minimization of Confined Nanofluids Laminar Flow Around a Block

[+] Author Affiliations
Mehdi Boghrati

Birjand University, Birjand, Iran

Ehsan Ebrahimnia Bajestan

Center of Science, High Technology & Environmental Science, Mahan, Iran

Vahid Etminan

Shiraz University, Shiraz, Iran

Paper No. ESDA2010-25287, pp. 729-736; 8 pages
doi:10.1115/ESDA2010-25287
From:
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 5
  • Istanbul, Turkey, July 12–14, 2010
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4919-4 | eISBN: 978-0-7918-3877-8
  • Copyright © 2010 by ASME

abstract

According to the importance of cooling and heating process of a solid object, entropy generation in confined flow around a block is studied. In the current study, numerical simulation of laminar flow and heat transfer of nanofluids with nanoparticles of different shapes is considered. The nanofluids are water mixture with either Al2O3 nanoshperes or carbon nanotubes (CNTs). The incompressible Navier-Stokes and energy equations are solved numerically in a body fitted coordinates system using a control volume technique. The flow patterns and temperature fields for different values of the particles concentrations are examined in detail. Furthermore, the effects of nanoparticles shape and concentration on the heat transfer are studied. Furthermore the influences of nanofluids on pressure drop and pump power is examined. On the other hand, the entropy generation minimization is considered as the optimization criterion. The results indicate that in most cases the nanofluids enhance the heat transfer as well as pressure drop. It is interesting to note that the shape of nanoparticles is critical in determining the key mechanism of heat transport in nanofluids. Nanofluids with cylindrical nanoparticles exhibit a greater increase in heat transfer compared with nanofluids having spherical shape nanoparticles.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In