Full Content is available to subscribers

Subscribe/Learn More  >

Variational Principles for the Stability Analysis of Multi-Walled Carbon Nanotubes Based on a Nonlocal Elastic Shell Model

[+] Author Affiliations
Mohsen Asghari, Jacob Rafati

Sharif University of Technology, Tehran, Iran

Paper No. ESDA2010-24473, pp. 591-598; 8 pages
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 5
  • Istanbul, Turkey, July 12–14, 2010
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4919-4 | eISBN: 978-0-7918-3877-8
  • Copyright © 2010 by ASME


The nonlocal continuum theories are capable to reflect the small length characteristic of nanostructures. In this work, variational principles are presented for the stability analysis of multi-walled carbon nanotubes under various mechanical loadings based on the nonlocal elastic Donnell’s shell by the semi-inverse method. In this manner, a set of proper essential and natural boundary conditions for each layer of the multi-walled nanotube is derived.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In