Full Content is available to subscribers

Subscribe/Learn More  >

A Modification on Performance of MEMS Gyroscopes by Parametro-Harmonic Excitation

[+] Author Affiliations
Ali Pakniyat, Hassan Salarieh, Gholamreza Vossoughi, Aria Alasty

Sharif University of Technology, Tehran, Iran

Paper No. ESDA2010-25257, pp. 433-441; 9 pages
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 5
  • Istanbul, Turkey, July 12–14, 2010
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4919-4 | eISBN: 978-0-7918-3877-8
  • Copyright © 2010 by ASME


In this paper, parametric excitation for MEMS gyroscope proposed by Oropeza-Ramos, et al. [1–4] is examined and problems associated with this kind of excitation are shown. It is proved that origin has exponential stability for some sets of parameter values (including those considered in [1–4]). This stability is shown to be global for linearized system and local for the general nonlinear system. Hence, it is concluded that if there would be a periodic orbit, the system has difficulties reaching it. As a solution, a harmonic term to the parametric excitation is added and the new actuation is referred to as parametro-harmonic excitation. It is shown that there are some parameter values for which a stable periodic orbit exists. Finally, stability of periodic orbit of the linear parametro-harmonically excited MEMS gyroscope is analyzed based on Floquet Theory. Figures show that in the non-resonant driving frequencies, only stiffness and damping play important roles in the stability of periodic response and other terms like excitation voltage and imposed external rotation are of less influence on this stability. However, in the parametric resonant regions, not only stiffness and damping affect stability, but also excitation voltage is of great importance.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In