0

Full Content is available to subscribers

Subscribe/Learn More  >

Large Amplitude Free Vibration Analysis of Thin Annular Sector Plates Using Differential Quadrature Method

[+] Author Affiliations
S. H. Mirtalaie

Islamic Azad University, Najaf Abad Branch, Najaf Abad, Iran

M. A. Hajabasi

Shahid Bahonar University of Kerman, Kerman, Iran

Paper No. ESDA2010-24604, pp. 193-202; 10 pages
doi:10.1115/ESDA2010-24604
From:
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 5
  • Istanbul, Turkey, July 12–14, 2010
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4919-4 | eISBN: 978-0-7918-3877-8
  • Copyright © 2010 by ASME

abstract

In this paper, the Differential Quadrature Method (DQM) is used to study the large amplitude free vibration of thin annular sector plates. The geometrical nonlinear governing equations of motion are derived based on the classical plate theory and using the von Karman nonlinear strain-displacement relationships. Following the DQ-procedure and employing the concept of new degrees of freedom a nonlinear eigenvalue problem is obtained which is solved iteratively and nonlinear natural frequencies of the plate are obtained. The results show a very good convergence and they are compared with the available literature for the clamped boundary conditions to demonstrate the validity of the work. The effects of boundary conditions, inner to outer radius ratio and sector angle on the large amplitude free vibration of thin plate are studied.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In