Full Content is available to subscribers

Subscribe/Learn More  >

Second Law Analysis of Nanofluid Flow Through Circular Pipe

[+] Author Affiliations
H. Shokouhmand, M. Moghaddami, M. Siavashi

University of Tehran, Tehran, Iran

Paper No. ESDA2010-25192, pp. 711-718; 8 pages
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 2
  • Istanbul, Turkey, July 12–14, 2010
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4916-3 | eISBN: 978-0-7918-3877-8
  • Copyright © 2010 by ASME


This paper aims to numerically investigate the effects of adding nanoparticles on the entropy generation of water-Al2 O3 nanofluid flows through a circular pipe under constant wall temperature also constant heat flux thermal boundary conditions in laminar regime. Approved formulations of mixtures are used for density and specific heat of the nanofluids. Nanofluid model proposed by Koo and Kleinstreuer [1] based on experimental data of Das et al. [2] is employed for conductivity of the nanofluids and an experimental correlation presented by Rea et al. [3] is used to model the viscosity of the nanofluid. The problem has been simulated numerically using a CFD finite-volume code and results are validated with the available experimental data. It is found that for the case of constant heat flux boundary condition, adding nanoparticles decreases the entropy generation and improves the thermal performance of water-Al2 O3 flow. Moreover optimum Reynolds number to minimize the ratio of nanofluid entropy generation number to water is obtained for this case. For the case of wall constant temperature boundary condition, adding nanoparticles to water leads to heat flux increase, therefore the entropy generation number remains approximately constant.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In