0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Burn-Through During In-Service Welding of T Joint Branch Connections

[+] Author Affiliations
A. H. Daei-Sorkhabi

Islamic Azad University-Tabriz Branch, Tabriz, Iran

M. A. Saeimi-Sadigh, F. Vakili-Tahami, M. Zehsaz, B. Behjat

University of Tabriz, Tabriz, Iran

Paper No. ESDA2010-25113, pp. 335-344; 10 pages
doi:10.1115/ESDA2010-25113
From:
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
  • ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 2
  • Istanbul, Turkey, July 12–14, 2010
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4916-3 | eISBN: 978-0-7918-3877-8
  • Copyright © 2010 by ASME

abstract

In this paper, the effect of three main parameters: a) welding speed, b) cooling rate of fluid flow through the main pipe; and c) number of welding passes, have been studied to obtain an effective method to reduce the burn-through risk during the in-service welding of AISI-316 pipe branch connection to perform hot-tapping. In addition, important patents regarding the new methods of hot-tapping have been reviewed. To carry out numerical simulation, a 3D Finite Element (FE) based thermo-mechanical model has been developed. Using this model, thermo-mechanical stresses and temperature distribution along the main-pipe wall-thickness have been obtained with maximum and minimum allowable welding speeds; and with two high and low level of steam flow rate through the main pipe. The Von-Mises yield criterion using the temperature dependent yield stress has been used to check the main pipe failure during the welding process. The results show that current techniques, including API recommendations, which only rely on the observation of the main-pipe inner wall temperature, does not take into account the effect of mechanical or thermal stresses due to the inline pressure or other working parameters which have significant role in burn-through. In addition, the results show that the increase of welding speed reduces the risk of burn-through but it increases the risk of hot cracking. On the other hand, decreasing the steam flow rate has the opposite effect. It has also been shown that using smaller electrode size is the most effective way to decrease burn-through risk.

Copyright © 2010 by ASME
Topics: Welding , Bifurcation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In