0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Vortex-Induced Vibration Response of a Model Riser and Location of Sensors for Fatigue Damage Prediction

[+] Author Affiliations
C. Shi, L. Manuel

University of Texas at Austin, Austin, TX

M. A. Tognarelli, T. Botros

BP America Production Company, Houston, TX

Paper No. OMAE2010-20991, pp. 901-910; 10 pages
doi:10.1115/OMAE2010-20991
From:
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 6
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4914-9 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME

abstract

This study is concerned with vortex-induced vibration (VIV) of deepwater marine risers. Riser response measurements from model tests on a densely instrumented long, flexible riser in uniform and sheared currents offer an almost ideal set-up for our work. Our objectives are two-fold: (i) we use the measured data to describe complexities inherent in riser motions accompanying VIV; and (ii) we discuss how such data sets (and even less spatially dense monitoring) can be used effectively in predicting fatigue damage rates which is of critical interest for deepwater risers. First, we use mathematical tools including Hilbert and wavelet transforms to estimate instantaneous amplitudes and phases of cross-flow (CF) and in-line (IL) displacements for the model riser as well as scalograms to understand time-frequency characteristics of the response; this work confirms that the motion of a long flexible cylinder is far more complex than that of a rigid cylinder, and that non-stationary characteristics, higher harmonics, and traveling waves are evident in the riser response. Second, a well-established empirical procedure, which we refer to as Weighted Waveform Analysis (WWA), is employed to estimate the fatigue damage rate at various locations along the length of the riser from strain measurements at only eight sensors. By iterating over numerous different combinations of these eight strain sensors as inputs (from among all the twenty-four available locations on the riser), optimal locations for the eight sensors on the riser are identified by cross-validation, whereby predicted strains and fatigue damage rates at locations of instrumented sensors are compared with strains and fatigue damage rates based on actual recorded measurements there. We find that, if properly placed, as few as eight sensors can provide reasonably accurate estimates of the fatigue damage rate over the entire riser length. Finally, we demonstrate how more accurate fatigue damage prediction can result when non-stationary response characteristics are considered and a modified WWA method (that more effectively accounts for traveling waves than the WWA method alone does) is employed.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In