Full Content is available to subscribers

Subscribe/Learn More  >

A Parametric Study on Effects of Environmental Loadings on Fatigue Life of Steel Catenary Risers (Using a Nonlinear Cyclic Riser-Soil Interaction Model)

[+] Author Affiliations
Mehrdad Kimiaei, Mark Randolph, Ivan Ting

University of Western Australia, Perth, Australia

Paper No. OMAE2010-21153, pp. 1085-1093; 9 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


Steel catenary risers (SCRs) are often the preferred option for subsea tie-back to floating platforms in deep water due to their conceptual simplicity, ease of construction and installation and simple interface with the flowlines. Fatigue design of SCRs, particularly in the touch down area (TDA), has always been one of the major engineering challenges. Traditionally, fatigue assessment of SCRs has usually been highly conservative, because of lack of precise understanding of the non-linear soil-riser-interaction in the TDA. Most fatigue studies are based on assumed linear stiffness for the seabed, partly because of the lack of robust non-linear riser-seabed interaction models and partly because the linear response simplifies the fatigue study. The recent availability of non-linear seabed response models provides an opportunity to improve fatigue assessment, but it is first necessary to evaluate how best to conduct fatigue studies for such nonlinear systems which can be sensitive to wide range of input parameters. This paper outlines a new advanced numerical model, considering nonlinear cyclic riser-soil interaction behavior, used to determine the contribution of different loading parameters on fatigue damage of SCRs in the TDA in deep water soft sediments. The main loading parameters considered are: different motions of floating vessels, wave heights, wave periods and wave packs ordering. Numerical modeling has shown that over 95% of the fatigue damage corresponds to floating vessel motion parallel to the riser axis at the connection point to the vessel. It is also shown that riser response at TDA is highly influenced with amplitude and period of the environmental loadings.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In