Full Content is available to subscribers

Subscribe/Learn More  >

Stress Assessment in Armour Layers of Flexible Risers

[+] Author Affiliations
Jean-Marc Leroy, Timothée Perdrizet, Vincent Le Corre

IFP, Solaize, France

Pascal Estrier

Technip, Solaize, France

Paper No. OMAE2010-20932, pp. 951-960; 10 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


The accurate modeling of offshore flexible risers behaviour remains a great challenge because of (i) their complex internal structure, (ii) the variable nature of the loads along the pipe (tension, curvature, internal and external pressures), (iii) and the interactions with structures used to limit the pipe curvature. Technip and IFP have been codeveloping for many years models dedicated to stresses calculation in the armour wires, to assess the flexible lifetime. These models must account for a large number of potential inner contacts (contacts between upper and lower layers, lateral contacts between adjacent armour wires in the same layer) as well as external contacts (bend stiffener, arch, bellmouth or other curvature limitation setup). The paper presents a comparison between 3 models with different level of complexity and realism. The first one is a in house model, whereas the two others were developed on the basis of the commercial FE code Abaqus. The first model, Life6, is based on some simplified assumptions in particular the fact that periodic solutions are assumed (given constant curvature in the pipe) and uses analytical solutions of equilibrium of wires on a torus (the bend pipe). The effect of non uniform curvature (in particular end-fitting proximity) is not considered in this model. The second model, namely 3D/Periodic model, is still based on a periodic assumption, but can cope with severe loadings (such as large curvature of the pipe or compression) leading to specific wires contact interactions. Abaqus Standard (Implicit scheme) is used. The third model, called 3D/Explicit model, is a full length model, as it includes end fittings effects, outer structure (like stiffener) interactions and any curvatures variations along the pipe. All contacts interactions are considered. The number of DOFs involved in the analysis requires the use of an explicit integration scheme (Abaqus Explicit) running on a parallel platform. These models are cross validated on a dedicated case study that consisted of a pressurized pipe cyclically bent with constant curvature. The validation of the model results is very satisfying even when lateral contacts between wires occur. Finally, a comparison of the 3D/Explicit model results with experimental data is presented. This model provides a very good estimation of the flexible behavior and of the end fitting effects.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In