Full Content is available to subscribers

Subscribe/Learn More  >

Comprehensive FEA of Thermal Mitigation Buoyancy Module (TMBM)–Soil Interaction Using the Coupled Eulerian–Lagrangian (CEL) Method

[+] Author Affiliations
Kenton Pike, Gang Duan, Jason Sun, Paul Jukes

MCS Kenny, Houston, TX

Paper No. OMAE2010-20885, pp. 865-870; 6 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


Thermal expansion and global buckling is a critical design aspect for subsea flowline systems subjected to high pressure and high temperature (HPHT). In the Gulf of Mexico, HPHT oil/gas production is becoming exceedingly common as drilling and production depths extend deeper. Advanced finite element analysis becomes essential for flowline expansion and buckling design which is highly dependent on pipe-soil interaction behavior. For decades, pipe-soil interaction has been the focus of many research studies and joint industry projects. For HPHT flowline systems, thermal mitigation is decisive for safe design. Thermal mitigation acts to control global buckling at designate locations and avoid buckling in unknown locations. Thermal mitigation results in significant cost savings by lowering the welding class besides the buckling locations and increases safety in terms of local buckling, fracture, and fatigue. One widely used thermal mitigation method involves attaching a buoyancy module around a segment of the flowline. In this paper the Coupled Eulerian Langrangian (CEL) finite element (FE) formulation is utilized to simulate the interaction between soil and the thermal mitigation buoyancy module (TMBM). The paper demonstrates the capability of the CEL FE method to simulate large soil deformation without the numerical difficulties that are commonly associated with other numerical formulations e.g. ALE (Arbitrary Lagrangian Eulerian) or more conventional Lagrangian. Initially, a three dimensional (3D), continuum, FE model is used to establish the variation of initial embedment along the length of the buoyancy and adjoining pipe. The study then establishes the lateral displacement/resistance relationships under different levels of contact pressure and soil embedment for a series of buoyancy-soil interaction segments, also using the CEL FE method. Current practice for global pipeline thermal expansion FEA is to utilize the same friction model for both buoyancy-soil interaction and pipe-soil interaction. The obtained buoyancy-soil interaction model from the current study is to be used as input to the global FE model to more precisely simulate flowline lateral buckling behavior. This paper presents a practical application of the current state of the art in modeling large soil deformations in providing an improved approach for modeling buoyancy-soil interactions in the global FEA of pipeline thermal expansion and lateral buckling.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In