0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Analysis of Multi-Spanning Subsea Pipeline

[+] Author Affiliations
Kosar Rezazadeh, Liyun Zhu, Liang Zhang

Harbin Engineering University, Harbin, China

Yong Bai

Zhejiang University, Hangzhou, China

Paper No. OMAE2010-20847, pp. 805-812; 8 pages
doi:10.1115/OMAE2010-20847
From:
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME

abstract

Free-span occurs normally in pipeline at uneven seabed, dynamic seabed or pipeline crossing. The analysis of free-span, including static analysis and dynamic analysis, is an important subject in the study of pipeline integrity management. Static analysis of free span for subsea pipeline is to evaluate the stress distribution of spanning pipeline in the ultimate conditions, and qualify the stress with design codes in the engineering analysis. However, dynamic analysis of subsea spanning pipeline is much complicated due to VIV fatigue. In 2006 DNV-RP-F105 suggested a methodology of dynamic analysis for long spanning pipeline with multi-mode responses, but the fatigue analysis method for multi-modes is not detailed. In addition, the fatigue analysis of multi-spanning pipeline is not clear. The gap between the continuous two spans, and the pipe-soil interaction control the fatigue damage of the multi-spanning pipeline. In this paper, a VIV fatigue analysis method for multi-spanning pipeline is suggested based on VIV analysis. In this method, Abaqus FE model is developed first to obtain the stress distribution and the natural frequency of each vibration mode for spanning pipeline on seabed in different configurations with three multi-spans, and then the fatigue analysis of VIV is carried out for the spanning pipeline based on DNV-RP-F105. An example of fatigue analysis for a multi-spanning pipeline is presented; finally, several sensitivity analyses demonstrate the effects of key parameters on the VIV fatigue.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In