Full Content is available to subscribers

Subscribe/Learn More  >

Numerical and Experimental Study of Natural Backfill of Pipeline in a Trench Under Steady Currents

[+] Author Affiliations
Di Wu

University of Western Australia, Perth, WA, Australia; Dalian University of Technology, Dalian, Liaoning, China

Liang Cheng, Ming Zhao

University of Western Australia, Perth, WA, Australia

Yongxue Wang

Dalian University of Technology, Dalian, Liaoning, China

Paper No. OMAE2010-20325, pp. 355-364; 10 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


After a sub-sea pipeline is laid in a trench excavated on a sandy sea bed, the sand around the trench will be washed into the trench by the flow, leading to natural backfill. Natural backfill is beneficial to the stability of the pipeline and cost saving. In this study, natural backfill of pipeline trench under steady currents was investigated experimentally and numerically. Experimental tests were carried out in a water flume of a size of 0.4 m in width, 0.6 m in height and 25 m in length. The model pipeline with a diameter of 5 cm was placed in a V-shape trench. The direction of steady current was perpendicular to the pipeline. Tests were carried out in both clear-water scour and live-bed scour conditions. The bed profiles at different stages of backfill process were measured by a laser profiler. It was found that the upstream part of the trench was backfilled faster than the downstream part. In the early stage of the backfill process, sand in front of the pipeline was washed into the trench very fast. The top part of the sand behind the pipeline was washed away faster while the lower part moved towards the pipeline due to strong vortices. Two-dimensional scour model developed by Zhao and Cheng (2008) was used for simulating the backfill process numerically. This model was validated against van Rijn’s (1986) navigation channel migration experiments and good agreement between experimental data and numerical results was achieved. Numerical simulation of the pipeline trench evolution was carried out under the same conditions used in the laboratory tests. The process of the backfill simulated by the numerical method agreed qualitatively with the test results. The comparison between the numerical and the test results showed that: (1) the simulated backfill rate was greater than the measured one in the upstream side of the pipeline; (2) the sand dune downstream the pipeline was washed away slower than the experimental results, and no backfill was observed. The discrepancy between the experimental and numerical results may be attributed to the fact that the empirical formulae used for predicting the bed load and the reference concentration of suspended load were derived from fully-developed straight channel flow tests, while the velocity varied dramatically along the bed in the cases of this study.

Copyright © 2010 by ASME
Topics: Pipelines , Currents



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In