Full Content is available to subscribers

Subscribe/Learn More  >

Ultimate Strength and Fatigue Durability of Steel Reinforced Rubber Loading Hoses

[+] Author Affiliations
Tom Lassen

University of Agder, Grimstad, Norway

Anders L. Eide

APL - BW Offshore, Arendal, Norway

Trond Stokka Meling

Statoil, Stavanger, Norway

Paper No. OMAE2010-20236, pp. 277-286; 10 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


Loading hoses in an offshore loading buoy system in the North Sea were investigated with respect to extreme load resistance and fatigue durability. Both experimental work and fatigue life analyses were carried out. The FLS test is based on the principle of a service simulation test according to the American Petroleum Institute (API) 17B guidelines. The test results given in number of endured cycles from the laboratory test are scaled to the in-service conditions. Although the life estimate is based on one full scale test only, an attempt has been made to account for the inherent scatter in fatigue life. Furthermore, the results are validated by large test series with small scale test specimens for the critical reinforcement components in the composite structure of the hose wall. Test series with steel wires and samples of the steel helix were carried out. Statistically based S-N curves with characteristic scatter are established. Finally, all experimental facts were assembled and fatigue life predictions made. Redesign is considered and a scheduled inspection and replacement program is presented. The rubber-steel composite structure has sufficient strength for both the ULS and FLS case. For a planned replacement interval of 10 years the thickness of the standard steel end fittings has to be increased and the shape of the fitting should be optimized with respect to fatigue.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In