Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Soil Non-Linearity on the Dynamic Behavior and Fatigue Life of Pipeline Spans Subjected to Slug Flow

[+] Author Affiliations
Euro Casanova, Armando Blanco

Universidad Simón Bolívar, Caracas, Venezuela

Paper No. OMAE2010-20126, pp. 185-192; 8 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


Offshore production fields require long submarine pipelines for transporting production fluids that are inherently multiphase. This condition and hydraulic sizing of pipelines lead often to the development of slug flow patterns in which condensate slugs traveling in the pipeline, act as moving gravity loads for the piping structure, therefore producing a dynamic response especially important for the free spans. Recently some authors have shown that this phenomenon may produce a cyclic damage that could reduce in a significant way the fatigue life of the pipelines, thus constituting a governing mechanism in their design. On the other hand, pipe-soil interaction has also been identified as an important factor in pipeline design and fatigue life; in particular it is important for determination of the static equilibrium configurations and the vibration response of free spanning pipelines. In this work a previously presented numerical model which combines fluid equations for predicting slug characteristics and a structural finite element model for the pipelines transporting slugs, is improved by introducing non linear characteristics of seabed supports. Different seabed supports (linear, perfectly plastic, and non linear with tension cut-off) and different properties of soil-pipe interaction (stiffness, damping and length of soil-pipe interaction) are considered, and their effects on vibration response and fatigue life are compared. Results show that soil pipe interaction is an important parameter in vibration response and fatigue life for pipeline spans subjected to slug flow.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In