Full Content is available to subscribers

Subscribe/Learn More  >

Residual Stress Effects on the Crack-Front Constraints for Surface Cracks in Pipes

[+] Author Affiliations
Xudong Qian, Tieping Li

National University of Singapore, Singapore

Paper No. OMAE2010-20068, pp. 123-131; 9 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 5, Parts A and B
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4913-2 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


This paper investigates the effect of residual stresses on the linear-elastic KI -T fields along the front of circumferential surface cracks in pipelines. The numerical procedure simulates three typical patterns of residual stresses through a modified eigenstrain approach, which combines a thermal loading with a mechanical traction imposed on the heat-affected zone. The three residual stress profiles considered correspond to the high-heat input, the medium-heat input and the low heat input welding processes for circumferential butt welds in pipes outlined in BS 7910. The linear-elastic KI -T stresses, computed from the interaction-integral approach, characterize the constraints along the front of the circumferential flaw. The numerical investigation, covering a comprehensive matrix of geometric parameters, shows that different residual stress fields impose substantial effects on the KI -T stresses along the front of the surface crack in the wall of a pipeline. The deepest point along the crack-front often experiences low crack-front constraints characterized by the computed negative T-stresses for all three residual stress fields considered. The magnitudes of the KI -values and T-stresses show pronounced variations with the change in the ratio of the crack depth over the wall thickness of the pipe (a/t). The variation in the crack aspect ratio (the crack depth over the crack length, a/c) introduces marginal variation in the computed T stresses. The ratio of the outer diameter to the wall thickness of pipe imposes very little effect on the linear-elastic crack-front constraints for the geometric parameters considered.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In