0

Full Content is available to subscribers

Subscribe/Learn More  >

A Comparison of the Model and Full Scale Transom Wave of the R/V Athena

[+] Author Affiliations
Thomas C. Fu, Anne M. Fullerton

Naval Surface Warfare Center, Carderock Division, West Bethesda, MD

Eric Terrill

Scripps Institution of Oceanography, San Diego, CA

Genevieve Lada Taylor

Scripps Insitution of Oceanography, San Diego, CA

Paper No. OMAE2010-20595, pp. 711-719; 9 pages
doi:10.1115/OMAE2010-20595
From:
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 3
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4911-8 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME

abstract

Over the past few years the U.S. Office of Naval Research has sponsored a series of measurements of the transom wave of the R/V Athena and of a 1/8.25-scale model (NSWCCD Model 5365) of the ship. The objectives of the testing were to characterize the free surface wave behind the ship’s transom at both model and full scale for use in identifying hydrodynamic features and for developing and validating numerical simulation tools. The focus of this paper is the comparison of these full scale and model scale measurements, specifically a comparison of the time-averaged free-surface stern wave profiles and the dominant hydrodynamic features, the rooster tail for example. Both the field measurements and the model scale tow tank measurements were made in as calm as possible ambient conditions. Full scale data was collected in the relatively protected waters of St. Andrews Bay, Florida. The winds, which typically build as the day progresses, were minimal, and it was a new moon during the test period, so tidal excursions were also minimized. While measurements were obtained for ship speeds ranging from 3.1 to 6.2 m/s (6 to 12 knots), equivalent to Froude number range based on length (47 m) of 0.14 to 0.29, respectively, the focus of the comparison is for the 0.24 Froude number (10.5 knots full scale) case. Measurements of the full scale stern wave were made by a scanning laser altimeter, while measurements at model scale were made using a traversing set of conductivity finger probes.

Copyright © 2010 by ASME
Topics: Waves

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In