Full Content is available to subscribers

Subscribe/Learn More  >

On Sea Experiment of a Hybrid SPAR for Floating Offshore Wind Turbine Using 1/10 Scale Model

[+] Author Affiliations
Tomoaki Utsunomiya, Hidekazu Matsukuma, Shintaro Minoura

Kyoto University, Kyoto, Japan

Kiyohiko Ko, Hideki Hamamura

Sasebo Heavy Industries Co., Ltd., Tokyo, Japan

Osamu Kobayashi, Iku Sato

Toda Corporation, Tokyo, Japan

Yoshihisa Nomoto, Kentaro Yasui

Nippon Hume Corporation, Tokyo, Japan

Paper No. OMAE2010-20730, pp. 529-536; 8 pages
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 3
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4911-8 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME


This study aims at development of a cost-effective floating offshore wind turbine. The proto-type model considered herein is composed of 1) 2MW horizontal-axis wind turbine (HAWT) of down-wind type, 2) steel mono-tower with 55m hub height above sea level, 3) steel-prestressed concrete (PC) hybrid SPAR-type foundation with 70m draught, and 4) catenary mooring system using anchor chains. In order to demonstrate the feasibility of the concept, on-sea experiment using a 1/10 scale model of the prototype has been made. The demonstrative experiment includes 1) construction of the hybrid SPAR foundation using PC and steel as same as the prototype, 2) dry-towing and installation to the on-sea site at 30m distance from the quay of the Sasebo shipbuilding yard, 3) generating electric power using a 1kW HAWT, and 4) removal from the site. During the on-sea experiment, wind speed, wind direction, tidal height, wave height, motion of the SPAR, tension in a mooring chain, and strains in the tower and the SPAR foundation have been measured. Motion of the SPAR has been numerically simulated and compared with the measured values, where basically good agreement is observed.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In