0

Full Content is available to subscribers

Subscribe/Learn More  >

Conceptual Design of OWC Wave Energy Converters Combined With Breakwater Structures

[+] Author Affiliations
Vallam Sundar

Indian Institute of Technology Madras, Chennai, India

Torgeir Moan, Jo̸rgen Hals

Norwegian Institute of Standards and Technology, Trondheim, Norway

Paper No. OMAE2010-20508, pp. 479-489; 11 pages
doi:10.1115/OMAE2010-20508
From:
  • ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
  • 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 3
  • Shanghai, China, June 6–11, 2010
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4911-8 | eISBN: 978-0-7918-3873-0
  • Copyright © 2010 by ASME

abstract

Ocean wave energy is one of several renewable sources of energy found in the ocean. The energy in the oscillatory ocean waves can be used to drive a machinery that converts the energy to other forms. Depending on the type and their location with respect the coast and offshore, a number of devices have been and are being developed to extract the wave energy for conversion into electricity. The most common devices are referred to as the oscillating water column (OWC), hinged contour device, buoyant moored device, hinged flap and overtopping device. Particularly popular are OWCs and moored floating bodies. The idea of integrating breakwater and wave energy converters emerged in the Indian wave energy program. Graw (1996) discussed this idea and pointed out the advantage of shared costs between the breakwater and the wave energy device. Because long waves are usually experience stronger reflection at coasts and breakwaters, they provide good conditions for the operation wave energy devices which work efficiently when the reflection is high. There are examples that OWC devices have been installed in water as shallow as 3 m. This paper reviews the options of integrating OWCs with different kinds of breakwaters like the perforated or non-perforated caisson breakwater, and non-gravity piled and floating types. The purpose of each of the concepts will also be highlighted.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In