0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic Acoustic Health Monitoring of Ball Bearings Using Neural Network Pattern Classification of Power Spectral Density

[+] Author Affiliations
William Kirchner, Steve Southward, Mehdi Ahmadian

Virginia Polytechnic & State University, Blacksburg, VA

Paper No. JRC2010-36240, pp. 255-265; 11 pages
doi:10.1115/JRC2010-36240
From:
  • 2010 Joint Rail Conference
  • 2010 Joint Rail Conference, Volume 2
  • Urbana, Illinois, USA, April 27–29, 2010
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4907-1 | eISBN: 978-0-7918-3867-9
  • Copyright © 2010 by ASME

abstract

This work presents a generic passive non-contact based acoustic health monitoring approach using ultrasonic acoustic emissions (UAE) to facilitate classification of bearing health via neural networks. This generic approach is applied to classifying the operating condition of conventional ball bearings. The acoustic emission signals used in this study are in the ultrasonic range (20–120 kHz), which is significantly higher than the majority of the research in this area thus far. A direct benefit of working in this frequency range is the inherent directionality of microphones capable of measurement in this range, which becomes particularly useful when operating in environments with low signal-to-noise ratios that are common in the rail industry. Using the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a multi-layer artificial neural network (ANN) to classify the UAE signature. One major problem limiting the usefulness of ANN’s for failure classification is the need for large quantities of training data. This becomes a particularly important issue when considering applications involving higher value components such as the turbo mechanisms and traction motors on diesel locomotives. Artificial training data, based on the statistical properties of a significantly smaller experimental data set is created to train the artificial neural network. The combination of the artificial training methods and ultrasonic frequency range being used results in an approach generic enough to suggest that this particular method is applicable to a variety of systems and components where persistent UAE exist.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In