Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Frequency Band Gaps in a Plate With Periodic Stubbed Surface

[+] Author Affiliations
Zi-Gui Huang

National Formosa University, Huwei, Yun-lin, Taiwan

Paper No. IMECE2010-39949, pp. 409-412; 4 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 13: Sound, Vibration and Design
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4450-2
  • Copyright © 2010 by ASME


The applications and researches of so-called photonic crystals raise the exciting researches of acoustic wave propagation and frequency band gaps in phononic crystals. The photonic crystal structure can be modeled in two different forms, namely the periodically-repeated dual materials, or a single medium with periodically-repeated stubbed surface. This paper presents the results of the tunable band gaps of acoustic waves in a plate with periodic stubbed surface using the finite element method. Band gaps variations of the plate modes due to different oriented angles of periodic stubbed surface are calculated and discussed. The results show that the elastic band gaps for plate modes can be enlarged or reduced by adjusting the orientation of stubbed surface. The phenomena in this idea can potentially be utilized for the design of new resonance frequency devices.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In