0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of a Phononic Crystal at Gigahertz Frequencies

[+] Author Affiliations
Seyedhamidreza Alaie, Arash K. Mousavi, Mehmet Su, Zayd C. Leseman

University of New Mexico, Albuquerque, NM

Paper No. IMECE2010-39005, pp. 389-393; 5 pages
doi:10.1115/IMECE2010-39005
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 13: Sound, Vibration and Design
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4450-2
  • Copyright © 2010 by ASME

abstract

In this paper, the vibrational behavior of a phononic crystal is studied at gigahertz frequencies. The phononic crystal is comprised of a silicon slab with tungsten inclusions filtering out waves within the frequency range of 0.7 GHz to 1.1 GHz. Two-dimensional harmonic finite element analysis (FEA) is employed to model the transmission of stresswaves launched from a transmitter and passing through the crystal. The numerical results are compared with another prevalent numerical method, finite difference time domain (FDTD), as well as with experimental results. Comparisons made between the numerical approaches and experimental approach, show that the harmonic finite element analysis agrees well with experiment and potentially can explain the experimental results more precisely than FDTD. This more favorable comparison is attributed to a resonance that occurs between the transmitter and the phononic crystal.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In