Full Content is available to subscribers

Subscribe/Learn More  >

Optimum Layout of Passive Constrained Layer Damping Treatment Using Genetic Algorithms

[+] Author Affiliations
S. W. Hou, Y. H. Jiao, Z. B. Chen

Harbin Institute of Technology, Harbin, China

Paper No. IMECE2010-40146, pp. 371-376; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 13: Sound, Vibration and Design
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4450-2
  • Copyright © 2010 by ASME


The passive constrained layer damping (CLD) treatments have been used widely for vibration suppression of various flexible structures. Fully covered CLD treatment is extensively used to depress the vibration over a wide frequency range in engineering applications. In most of these treatments it is required that the CLD treatment should not significantly increase the weight or volume. This paper focuses on damping optimization of fully coating beam with a constrained viscoelastic layer. The governing equation of motion of a CLD covered beam is derived using an energy approach and Lagrange’s method. The assumed modes method is employed in solving the equation to obtain the modal loss factors which are used as the objective of optimal layout. A genetic algorithm with large-scale mutation method is employed to search for the optima of the thicknesses of both the constraining layer (CL) and the viscoelastic layer (VL) and the shear modulus of the viscoelastic material (VEM) with the restriction of added volume of the total CLD treatment. Numerical results show that the optima of three design variables, the thicknesses of the CL and the VL and the shear modulus of its viscoelastic material, are highly relevant to each other. The softer or thinner constraining layer requires a softer viscoelastic material for an optimal damping treatment, and high value of the elastic modulus of the base beam matches high shear modulus of the viscoelastic material. The variation of the CL thickness decreases slowly and that of the VL thickness increases with the increase of the thickness of the CLD treatment. Stiffer constraining layer assure greater modal loss factors.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In