0

Full Content is available to subscribers

Subscribe/Learn More  >

Countermeasure Against Regenerative Chatter in End Milling Operations With Vibration Absorbers

[+] Author Affiliations
Y. Nakano, H. Takahara

Tokyo Institute of Technology, Tokyo, Japan

Paper No. IMECE2010-37818, pp. 157-166; 10 pages
doi:10.1115/IMECE2010-37818
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 13: Sound, Vibration and Design
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4450-2
  • Copyright © 2010 by ASME

abstract

Chatter can result in the poor machined surface, tool wear and reduced product quality. Chatter is classified into the forced vibration and the self-excited vibration in perspective of the generation mechanism. It often happens that the self-excited chatter becomes problem practically because this causes heavy vibration. Regenerative chatter due to regenerative effect is one of the self-excited chatter and generated in the most cutting operations. Therefore, it is very important to quench or avoid regenerative chatter (hereafter, simply called chatter). It is well known that chatter can be avoided by selecting the optimal cutting conditions which are determined by using the stability lobe of chatter. The stability lobe of chatter represents the boundary between stable and unstable cuts as a function of spindle speed and depth of cut. However, it is difficult to predict the stability lobe of chatter perfectly because the prediction accuracy of it depends on the tool geometry, the vibration characteristics of the tool system and the machine tool and the material behavior of the workpiece. In contrast, it is made clear that the stability lobe of chatter has been elevated in the wide range of spindle speed by the vibration absorber in the turning operations. However, it should be noted that none of the previous work has actually applied the vibration absorbers to the rotating tool system in the machining center and examined the effect of the vibration absorbers on chatter in the end milling operations to the best of authors’ knowledge. In this paper, the effect of the vibration absorbers on regenerative chatter generated in the end milling operations is qualitatively evaluated by the stability analysis and the cutting test. It is made clear the relationship between the suppression effect of the vibration absorbers and the tuning parameters of them. It is shown that the greater improvement in the critical axial depth of cut is observed in the wide range of spindle speed by the properly tuned vibration absorbers.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In