0

Full Content is available to subscribers

Subscribe/Learn More  >

Improved Mechanical Design for a Fully Variable Electromechanical Valve Actuation System for Internal Combustion Engines

[+] Author Affiliations
Hossein Rokni Damavandi Taher, Rudolf J. Seethaler, Abbas S. Milani

University of British Columbia Okanagan, Kelowna, BC, Canada

Paper No. IMECE2010-38711, pp. 747-755; 9 pages
doi:10.1115/IMECE2010-38711
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 11: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4448-9
  • Copyright © 2010 by ASME

abstract

This study aims to improve the mechanical design of a fully flexible valve actuation system (FFVA) for intake valves of internal combustion engines. Optimization procedures for increasing the reliability and efficiency of the mechanical design of the FFVA system are presented. Simulations and experimental tests are carried out in order to validate the system performance. It is shown that position, velocity and acceleration of the valve obtained by simulations are consistent with those observed experimentally. Furthermore, it is observed that the mechanical vibrations are considerably reduced in the redesigned FFVA system. As a result, current levels and ohmic losses in the electric motor are also reduced. The present redesigned FFVA system then provides more reliable valve motion and better efficiency than the previously shown design [25].

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In