0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Method for Protecting Pipeline in Summer Monsoon

[+] Author Affiliations
Shaohui Jia, Lei Guo, Qingshan Feng, Lijian Zhou

PetroChina Pipeline R&D Center, Langfang, Hebei, China

Yan Huang

Zhejiang University, Hangzhou, Zhejiang, China

Paper No. IMECE2010-39885, pp. 523-531; 9 pages
doi:10.1115/IMECE2010-39885
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 11: New Developments in Simulation Methods and Software for Engineering Applications; Safety Engineering, Risk Analysis and Reliability Methods; Transportation Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4448-9
  • Copyright © 2010 by ASME

abstract

In annual summer monsoon, geo-hazard is common. Monsoon-caused casualties and economic losses throughout the year accounted for 70% ∼ 80% of the total annual losses. Also, geo-hazard is a serious threat for pipeline operators to manage. Over 12,000 kilometers of pipelines with crude oil, gas, and refined oil are operated by PetroChina Pipeline Company. The pipelines, through sixteen provinces and cities, have been operated for over forty years. Geographic Information System (GIS) technology, as an effective spatial analysis tool, provides advanced analysis for pipeline geo-hazard prediction and early warning during summer monsoon based on field data and historical precipitation records. After many years of research and application of our prediction model of pipeline geo-hazard, an important link between geo-hazard and rainfall is understood. Rainfall is the main triggering factor of geo-hazards such as landslide and debris flow leading to heavy losses, especially rainstorm and heavy rainstorm. We use GIS technology to perform spatial analysis with predicted rainfall data the next twenty-four hours and the data of pipeline geo-hazard susceptibility, and predict the severity of pipeline impacts caused by geo-hazards during the next twenty-four hours. Finally, the result is modified by existed geo-hazards data. The pipeline geo-hazard early warning is divided into five ranks which are displayed by different colors, and pipelines damaged by geo-hazards and protection measures are also proposed. During July 16 and 17 of 2009 years, we released geo-hazard early warning four rank of Lanzhou-Chengdu-Chongqing Oil Pipeline through PetroChina Pipeline Company web page and the communication software of Instant Messaging. The Lanzhou-Chengdu-Chongqing Oil Pipeline Company acted promptly with a detailed deployment and emergency plan to ensure pipeline safety.

Copyright © 2010 by ASME
Topics: Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In