Full Content is available to subscribers

Subscribe/Learn More  >

Small Satellite Formations via Higher Velocity Deployment

[+] Author Affiliations
Matthew G. McMullen, Tamara Alexander, Adam Huang

University of Arkansas, Fayetteville, AR

Paper No. IMECE2010-40010, pp. 877-886; 10 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME


Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, which offers a benefit in covering more area at the same time, achievable through formations. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of low deployment velocities (on the order of meters per second). Prior research in using a pneumatic launcher shows that it is possible to achieve higher deployment velocities (75–125 m/s). This is beneficial in that it opens the possibility for limited but useful orbit placement and small satellite formations. Achieving a formation is done by reformulating the classical orbital mechanics equations to find the required deployment velocity vectors that yield the desired formation.

Copyright © 2010 by ASME
Topics: Satellites



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In