0

Full Content is available to subscribers

Subscribe/Learn More  >

On Chip Micropumping for Biofluids by Temperature Biased AC Electrothermal Effect

[+] Author Affiliations
Jie Wu, Kai Yang, Quan Yuan

The University of Tennessee, Knoxville, TN

Paper No. IMECE2010-39831, pp. 831-836; 6 pages
doi:10.1115/IMECE2010-39831
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME

abstract

For biofluids, very limited voltage can be applied without causing reactions, even with AC voltages, so conventional electrokinetic pumps cannot function effectively. Here two innovative ACEK micropump designs are proposed, which are expected to solve the long-standing problem of on-chip pumping for biofluids. This work focuses on exploiting external heat flux or temperature bias to enhance micropumping by AC electrothermal effect. AC electrothermal effect is ubiquitous as long as electric current flows through fluid. Investigating the interplay between electric field and temperature field will be useful for the research area of electrokinetics as a whole. New methods to enhance on chip micorpumping have been presented in this paper. Inhomogenous electric fields can cause uneven Joule heating of the fluid, which generates thermal gradients and leads to mobile charges in fluid bulk. The two pumping schemes circumvent the voltage problem by introducing extra thermal gradient to generate mobile charges. The free charges then move under the electric field and induce microflows due to viscosity. Numerical simulation and preliminary experiments have successfully demonstrated the improvement in flow velocity. It enriches the repertoire for the design of ACEK micropump, and affords us more flexibility when dealing with micropumping tasks. The micropumping mechanisms proposed here are simple, robust, of small form factor, can be readily integrated into microsystems at low cost. The proposed fabrication and micropump integration process is highly manufacturable with various materials and can be easily incorporated into a fully integrated biochip. The added design flexibility from this project will lend the pump design well towards many lab-on-a-chip applications.

Copyright © 2010 by ASME
Topics: Temperature

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In