Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Properties of Three-Dimensional Microstructures Infiltrated by Carbon Nanotube/Epoxy Nanocomposite Under Shear Flow

[+] Author Affiliations
Rouhollah Dermanaki Farahani, Hamid Dalir, Martin Lévesque, Daniel Therriault

École Polytechnique de Montréal, Montréal, QC, Canada

Paper No. IMECE2010-39086, pp. 689-694; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME


Three-dimensional interconnected microfluidic channels fabricated by the direct-write method were infiltrated with SWCNT/epoxy nanocomposites under high shear flow to mechanically characterize the effect of single-walled carbon nanotubes (SWCNTs) spatial orientation in thermosetting-matrix nanocomposites. The micron-size fugitive ink filaments were deposited layer by layer in order to form a scaffold followed by its encapsulation by an epoxy resin. Three-dimensional interconnected microfluidic channels were then obtained by heat curing the encapsulated epoxy followed by fugitive ink removal by liquefying it at high temperature under vacuum. To debundle the Laser-ablated single-walled carbon nanotubes (La-SWNTs), nitric acid treatment following introduction of protoporphyrin IX as surfactant were done to prevent reclustering of the CNTs after separation. La-SWNTs were then mixed with ultraviolet-curable epoxy using a three-roll mill machine to achieve a well-dispersed nanocomposite. The nanocomposites were then infiltrated within the empty channels at high pressures to induce shear. High shear flow infiltration of nanocomposites will cause the CNTs to be aligned in the direction of the channels where an increase in shear leads to an increase in CNT alignments. Finally, in order to mechanically investigate the effectiveness of the infiltration technique and the orientation of SWCNTs, tensile and three-point bending tests were done.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In